- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alonso, D (1)
-
Alonso, D. (1)
-
Bacon, D. (1)
-
Best, P. N. (1)
-
Bhardwaj, N. (1)
-
Bilicki, M (1)
-
Bilicki, M. (1)
-
Brüggen, M (1)
-
Böhme, L. (1)
-
Camera, S. (1)
-
Duncan, K. J. (1)
-
Hale, C L (1)
-
Hale, C. L. (1)
-
Heneka, C (1)
-
Heneka, C. S. (1)
-
Jarvis, M J (1)
-
Jarvis, M. J. (1)
-
Kondapally, R. (1)
-
Magliocchetti, M. (1)
-
Nakoneczny, S J (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aims. We combined the LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) second data release (DR2) catalogue with gravitational lensing maps from the cosmic microwave background (CMB) to place constraints on the bias evolution of LoTSS-detected radio galaxies, and on the amplitude of matter perturbations. Methods. We constructed a flux-limited catalogue from LoTSS DR2, and analysed its harmonic-space cross-correlation with CMB lensing maps fromPlanck,Cℓgk, as well as its auto-correlation,Cℓgg. We explored the models describing the redshift evolution of the large-scale radio galaxy bias, discriminating between them through the combination of bothCℓgkandCℓgg. Fixing the bias evolution, we then used these data to place constraints on the amplitude of large-scale density fluctuations, parametrised byσ8. Results. We report the significance of theCℓgksignal at a level of 26.6σ. We determined that a linear bias evolution of the formbg(z) =bg,D/D(z), whereD(z) is the growth rate, is able to provide a good description of the data, and we measuredbg,D= 1.41 ± 0.06 for a sample that is flux limited at 1.5 mJy, for scalesℓ< 250 forCℓgg, andℓ< 500 forCℓgk. At the sample’s median redshift, we obtainedb(z= 0.82) = 2.34 ± 0.10. Usingσ8as a free parameter, while keeping other cosmological parameters fixed to thePlanckvalues, we found fluctuations of σ8= 0.75−0.04+0.05. The result is in agreement with weak lensing surveys, and at 1σdifference withPlanckCMB constraints. We also attempted to detect the late-time-integrated Sachs-Wolfe effect with LOFAR data; however, with the current sky coverage, the cross-correlation with CMB temperature maps is consistent with zero. Our results are an important step towards constraining cosmology with radio continuum surveys from LOFAR and other future large radio surveys.more » « less
-
Hale, C. L.; Schwarz, D. J.; Best, P. N.; Nakoneczny, S. J.; Alonso, D.; Bacon, D.; Böhme, L.; Bhardwaj, N.; Bilicki, M.; Camera, S.; et al (, Monthly Notices of the Royal Astronomical Society)ABSTRACT Covering $$\sim 5600\, \deg ^2$$ to rms sensitivities of ∼70−100 $$\mu$$Jy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of $$0.5 \le \theta \lt 5{^\circ }$$, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of $$b_{\rm C}= 2.14^{+0.22}_{-0.20}$$ (assuming constant bias) and $$b_{\rm E}(z=0)= 1.79^{+0.15}_{-0.14}$$ (for an evolving model, inversely proportional to the growth factor), corresponding to $$b_{\rm E}= 2.81^{+0.24}_{-0.22}$$ at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to $$b_{\rm C}= 2.02^{+0.17}_{-0.16}$$ and $$b_{\rm E}(z=0)= 1.67^{+0.12}_{-0.12}$$ when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates.more » « less
An official website of the United States government
